The newly discovered T-cell immunoglobulin mucin (TIM) gene family molecules, expressed by T cells, regulate host immunity and tolerance. Although CD4+ T cells mediate innate immunity-dominated liver ischemia-reperfusion injury (IRI), the underlying mechanisms remain obscure. We have recently documented the novel function of TIM-1 pathway in the mechanism of liver IRI and also found that TLR4 activation plays a key triggering role. Using an anti-TIM-3 Ab, we now studied the role of TIM-3 signaling in the model of partial warm liver ischemia followed by reperfusion. Anti-TIM-3 Ab therapy exacerbated the liver damage, as compared with controls. Histological examination has revealed that anti-TIM-3 Ab augmented the hepatocellular damage, increased local neutrophil infiltration, facilitated local accumulation of T cells/macrophages and promoted liver cell apoptosis. Intrahepatic neutrophil activity, induction of pro-inflammatory cytokines/chemokines and expression of cleaved caspase-3/NF-NB/TLR4 were all increased in the treatment group. In parallel, anti-TIM-3 Ab and anti-galectin-9 (Gal-9; TIM-3 ligand) Ab increased IFN-γ production in ConA-stimulated spleen T cells, and TNFα/IL-6 expression in ConA-stimulated macrophage/T cell co-culture system. Interestingly, anti-TIM-3 Ab treatment did not affect liver IRI in TLR4-deficient (KO) mice. In conclusion, TIM-3 blockade exacerbated local inflammation and liver damage, suggesting importance of TIM-3/Gal-9 signaling in the maintenance of hepatic homeostasis. TIM-3-TLR4 cross regulation determined the severity of liver IRI in TLR4-dependent manner, a novel finding of potential importance to modulate tissue innate vs. adaptive responses in liver transplant patients. Thus, harnessing physiological negative T cell co-stimulation signaling on hepatic T cells may minimize innate immunity-mediated liver tissue damage.