Sepsis is an excessive inflammatory condition with a high mortality rate and limited prediction and therapeutic options. In this study, for the first time, to our knowledge, we found that downregulation and/or blockade of T cell Ig and mucin domain protein 3 (Tim-3), a negative immune regulator, correlated with severity of sepsis, suggesting that Tim-3 plays important roles in maintaining the homeostasis of sepsis in both humans and a mouse model. Blockade and/or downregulation of Tim-3 led to increased macrophage activation, which contributed to the systemic inflammatory response in sepsis, whereas Tim-3 overexpression in macrophages significantly suppressed TLR-mediated proinflammatory cytokine production, indicating that Tim-3 is a negative regulator of TLR-mediated immune responses. Cross-talk between the Tim-3 and TLR4 pathways makes TLR4 an important contributor to Tim-3–mediated negative regulation of the innate immune response. Tim-3 signaling inhibited LPS–TLR4–mediated NF-κB activation by increasing PI3K–AKT phosphorylation and A20 activity. This negative regulatory role of Tim-3 reflects a new adaptive compensatory and protective mechanism in sepsis victims, a finding of potential importance for modulating innate responses in these patients.