Microfluidic chips have found many advanced applications in the areas of life science, analytical chemistry, agro-food analysis, and environmental detection. This chapter focuses on investigating the commonly used manufacturing technologies and process chain for the prototyping and mass production of microfluidic chips. The rapid prototyping technologies comprising of PDMS casting, micro machining, and 3D-printing are firstly detailed with some important research findings. Scaling up the production process chain for microfluidic chips are discussed and summarized with the perspectives of tooling technology, replication, and bonding technologies, where the primary working mechanism, technical advantages and limitations of each process method are presented. Finally, conclusions and future perspectives are given. Overall, this chapter demonstrates how to select the processing materials and methods to meet practical requirements for microfluidic chip batch production. It can provide significant guidance for end-user of microfluidic chip applications.