Different manufacturing processes can be utilized to fabricate light-weight high-strength materials for their applications in a wide spectrum of industries such as aerospace, automotive and biomedical sectors among which accumulative roll bonding (ARB) is a promising severe plastic deformation (SPD) method capable of creating ultrafine grains (UFG) in the final microstructure. The present review discusses recent advancements in the ARB process starting with the ARB basics, intricacies of the underlying mechanisms and physics, different materials, surface and rolling parameters, and finally its key effects on different properties such as strength, ductility, fatigue, toughness, superplasticity, tribology and thermal characteristics. Moreover, results of recent computational investigations have also been briefed towards the end. It is believed that ARB processing is an emerging area with tremendous opportunities in the industrial sector and ample potential in tailoring microstructures for high-performance materials.