High pressure pulsations excited by rotor stator interaction is always focused in pumps, especially for its control considering the stable operation. In the current research, a special staggered impeller is proposed to reduce intense pressure pulsations of a centrifugal pump with ns=69 based on alleviating rotor stator interaction. The numerical simulation method is conducted to illustrate the influence of staggered impeller on the pump performance and pressure pulsations, and three typical flow rates (0.8ФN-1.2ФN) are simulated. Results show that the staggered impeller will lead to the pump head increasing, and at the design working condition, the increment reaches about 3% compared with the original impeller. Meanwhile, the pump efficiency is little affected by the staggered impeller, which is almost identical with the original impeller. From comparison of pressure spectra at twenty monitoring points around the impeller outlet, it is validated that the staggered impeller contributes significantly to decreasing pressure pulsations at the concerned working conditions. At the blade passing frequency, the averaged reduction of twenty points reaches 89% by using the staggered impeller at 1.0ФN. The reduction reaches to 90%, 80% at 0.8ФN, 1.2ФN respectively. Caused by the rib within the staggered impeller, the internal flow field in the blade channel will be affected. Finally, it is concluded that the proposed staggered impeller surely has a significant effect on alleviating intense pressure pulsation of the model pump, which is very promising during the low noise pump design considering its feasibility for manufacturing.