Absorption and scattering of propagated microwave radio signals by atmospheric variables, particularly rainfall, remained a major cause of propagation attenuation losses and service quality degradation over terrestrial communication links. The International Telecommunications Union Radio (ITU-R) reports and other related works in the literature provided information on attenuation due to rain and microwave propagation data. Such propagation attenuation information in the tropical region of Nigeria is destitute, especially at lower radio waves transmission frequencies. Therefore, this study addresses this problem by employing 12-year rainfall datasets to conduct realistic prognostic modeling of rain rate intensity levels. A classification of the rainfall data into three subgroups based on the depth of rainfall in the region is presented. Additionally, an in-depth estimation of specific rain attenuation intensities based on the 12-year rainfall data at 3.5 GHz is demonstrated. On average, the three rainfall classes produced rain rates of about 29.27 mm/hr, 73.71 mm/hr, and 105.39 mm/hr. The respective attenuation values are 0.89 dB, 1.71 dB, and 2.13 dB for the vertical polarisation and 1.09 dB, 1.20 dB, and 2.78 dB for the horizontal polarisation at 0.01% time percentage computation. Generally, results indicate that higher rain attenuation of 12% is observed for the horizontal polarisation compared to the vertical polarisation. These results can provide valuable first-hand information for microwave radio frequency planning in making appropriate decisions on attenuation levels due to different rainfall depths, especially for lower frequency arrays.