Owing to the topological protection and the ease of efficient manipulation, skyrmions have emerged as potential candidates for carrying information in future memory and logic devices. Here, we have proposed a reconfigurable skyrmion based two-input logic device architecture. Using micromagnetic simulations, we have demonstrated that the device is capable of performing both OR and AND logic gate functionalities in a reconfigurable manner. Different logic functionality of the device is selected by using a current through a nonmagnetic metallic gate, and the resultant Oersted field controls the trajectory of the skyrmion, which in turn determines the logic states. The logic functions are implemented on a ferromagnet/heavy metal bilayer device structure by virtue of several physical effects, such as the spin−orbit torque, skyrmion−edge repulsion, skyrmion−skyrmion topological repulsion, and skyrmion Hall effect. The skyrmion trajectory has been characterized by estimating the skyrmion Hall angle. A wide range of operations by varying the current density, skyrmion velocity, Dzyaloshinskii−Moriya interaction, magnetic anisotropy, and geometrical parameters have been presented in detail. We believe that our spin orbit torque driven logic design will have potential implications for a high-speed and low-power skyrmion based computing architecture.