A multifunctional nanoparticle, Super Paramagnetic Iron Oxide Nanoparticle-Carbon Dots (SPION-CDs), for fluorescence and magnetic resonance imaging is introduced. This nanoparticle possesses the magnetic properties of super-paramagnetic iron oxide (SPION) core as well as the fluorescence characteristics of carbon dots (CDs) coated in mesoporous structure. The SPION-CDs were synthesized using a high temperature facile single-pot hydrothermal method. The products were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), UV/vis absorption, vibrating sample magnetometer (VSM). The cytotoxic effect of SPION-CDs on OVCAR-3 cells was also evaluated. The synthesized nanoparticle possesses optimal size, low toxicity and excellent magnetic properties, including super-paramagnetic behavior (Ms = 42 emu g−1). Moreover, in the viewpoint of optical properties, the quantum yield of ~2.4% was obtained and the nanoparticle shows good fluorescence stability for cell-labeling studies. This multifunctional nanoparticle with appropriate characterization is a promising candidate for multimodal fluorescence/magnetic resonance imaging platform.