The use of phase change materials (PCMs) has become an increasingly common way to reduce a building’s energy usage when added to the building envelope. This developing technology has demonstrated improvements in thermal comfort and energy efficiency, making it a viable building energy solution. The current study intends to provide a comprehensive review of the published studies on the utilization of PCMs in various constructions of energy-efficient roofs, walls, and ceilings. The research question holds massive potential to unlock pioneering solutions for maximizing the usefulness of PCMs in reducing cooling demands, especially in challenging high-temperature environments. Several issues with PCMs have been revealed, the most significant of which is their reduced effectiveness during the day due to high summer temperatures, preventing them from crystallizing at night. However, this review investigates how PCMs can delay the peak temperature time, reducing the number of hours during which the indoor temperature exceeds the thermal comfort range. Additionally, the utilization of PCMs can improve the building’s energy efficiency by mitigating the need for cooling systems during peak hours. Thus, selecting the right PCM for high temperatures is both critical and challenging. Insulation density, specific heat, and thermal conductivity all play a role in heat transfer under extreme conditions. This study introduces several quantification techniques and paves the way for future advancements to accommodate practical and technical solutions related to PCM usage in building materials.