In this chapter, an experimentally and numerically conducted investigation of the existence of high chaotic spiking in the dynamics of semiconductor lasers with AC-coupled optical feedback, the bifurcation diagram by feedback strength attenuation and the bias current as a control parameter was done. A semiconductor laser subjected to an external optical feedback can present a big change of dynamic behaviors, such as periodic and quasiperiodic oscillations, chaos, coherence collapse, and low-frequency fluctuations (LFF's) that degrade the laser characteristics. The chaotic instability is experimentally investigated on feedback strength as a control parameter, and the resulted dynamic is monostability. Finally, we indicated that the observed chaotic dynamic is a good candidate to hide information in order to investigate the resonance phenomena, which is important for chaos to encrypt data in optical communication, where data disappear when modulated in a chaos carrier. The aim of this chapter is to investigate the encryption area in the chaotic system when the applied frequency is 1-500 MHz, for satisfying the secure communication.