Co-aggregation among bacterial cells caused by the adherence of one bacterial species to another is a potential colonization mechanism. Several putative aggregation factors for co-aggregation between Porphyromonas (Por.) gingivalis and Prevotella (Pre.) intermedia were partially purified from Por. gingivalis vesicles by gel filtration and affinity chromatography. Antisera against the aggregation factors were made. Analysis using these antisera revealed that 18 and 44 kDa proteins might be responsible for Por. gingivalis vesicle-mediated aggregation of Pre. intermedia. Using antiserum against the 18 kDa protein, the DNA region encoding it was cloned from Por. gingivalis genomic DNA. Sequence analysis revealed that the DNA region was located within the rgpA and kgp genes, encoding Arg-gingipain (Rgp) and Lys-gingipain (Kgp), respectively, and it encoded non-catalytic adhesin domain regions, namely a C-terminal portion of HGP15, the entire HGP17 sequence and an N-terminal portion of HGP27. A portion of the DNA sequence was also found in the haemagglutinin A (hagA) gene. A recombinant glutathione S-transferase (GST)-HGP17 fusion protein reacted to antiserum against the 18 kDa protein and Pre. intermedia cells could adhere to GST-HGP17-conjugated Sepharose 4B beads, indicating that the HGP17 domain protein is responsible for Por. gingivalis vesicle-mediated aggregation of Pre. intermedia.