Linearity and unitarity are two fundamental tenets of quantum theory. Any consequence that follows from these must be respected in the quantum world. The no-cloning theorem [1] and the no-deleting theorem [2] are the consequences of the linearity and the unitarity. Together with the stronger no-cloning theorem they provide permanence to quantum information [3], thus, suggesting that in the quantum world information can neither be created nor be destroyed. In this sense quantum information is robust, but at the same time it is also fragile because any interaction with the environment may lead to loss of information. Recently, another fundamental theorem was proved, namely, the no-hiding theorem [4] that addresses precisely the issue of information loss. It says that if any physical process leads to bleaching of quantum information from the original system, then it must reside in the rest of the universe with no information being hidden in the correlation between these two subsystems. This has applications in quantum teleportation [5], state randomization [6], private quantum channels [7], thermalization [8] and black hole evaporation [9]. Here, we report experimental test of the no-hiding theorem with the technique of nuclear magnetic resonance (NMR). We use the quantum state randomization of a qubit as one example of the bleaching process and show that the missing information can be fully recovered up to local unitary transformations in the ancilla qubits. Since NMR offers a way to test fundamental predictions of quantum theory using coherent control of quantum mechanical nuclear spin states, our experiment is a step forward in this direction. * Deceased on her 27th birthday 12th Nov. 2009. The experimental work of this paper was completely carried out by the first author. We dedicate this paper to the memory of the brilliant soul of Ms. Jharana Rani Samal.