Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is believed to have a zoonotic origin. Bats are a suspected natural host of SARS-CoV-2 because of sequence homology with other bat coronaviruses. Understanding the origin of the virus and determining species susceptibility is essential for managing the transmission potential during a pandemic. In a previous study, we established an in vitro animal model of SARS-CoV-2 susceptibility and replication in a non-permissive avian fibroblast cell line (DF1) based on expression of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) from different animal species. In this work, we express the ACE2 of seven bat species in DF1 cells and determine their ability to support attachment and replication of the original SARS-CoV-2 Wuhan lineage virus, as well as two variants, Delta and Lambda. We demonstrate that the ACE2 receptor of all seven species: little brown bat (Myotis lucifugus), great roundleaf bat (Hipposideros armiger), Pearson's horseshoe bat (Rhinolophus pearsonii), greater horseshoe bat (Rhinolophus ferrumequinum), Brazilian free-tailed bat (Tadarida brasiliensis), Egyptian rousette (Rousettus aegyptiacus), and Chinese rufous horseshoe bat (Rhinolophus sinicus), made the DF1 cells permissible to the three isolates of SARS-CoV-2. However, the level of virus replication differed between bat species and variant tested. In addition, the Wuhan lineage SARS-CoV-2 virus replicated to higher titers (104.5 -105.5 TCID50) than either variant virus (103.5-104.5 TCID50) on pass 1. Interestingly, all viruses tested grew to higher titers (approximately 106 TCID50) when cells expressed the human ACE2 gene compared to bat ACE2. This study provides a practical in vitro method for further testing of animal species for potential susceptibility to current and emerging SARS-CoV-2 viruses.