Boiling flows are encountered in a wide range of industrial applications such as boilers, core and steam generators in nuclear reactors, petroleum transportation, electronic cooling and various types of chemical reactors. Many of these applications involve boiling flows in conventional channels (channel size ≥ 3 mm). The key design issues in two phase flow boiling are variation in flow regimes, occurrence of dry out condition, flow instabilities, and understanding of heat transfer coefficient and vapor quality. This paper briefly reviews published experimental and modeling work in these areas. An attempt is made to provide a perspective and to present available information on boiling in small channels in terms of channel size, flow regimes, heat transfer correlations, pressure drop, critical heat flux and film thickness. An attempt is also made to identify strengths and weaknesses of published approaches and computational models of boiling in small channels. The presented discussion and results will provide an update on the state-of-the-art and will be useful to identify and plan further research in this important area.