Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Fluid catalytic cracking (FCC) is the workhorse of modern crude oil refinery. Its regenerator plays a critical role in optimizing the overall profitability by efficiently restoring the catalyst activity and enhancing the heat balance in the riser reactor. Improvement in the device metallurgy and process operations have enabled industrial regenerators to operate at high temperatures with better a coke burning rate and longer operating cycle. Today, the carbon content of regenerated catalyst has drastically reduced to less than 0.1 wt.%. However, the unit is still plagued with operational complexities and insufficient understanding of the underlying dynamic, multiscale intricacies. Recent process-intensification strategies provide insights into regenerator performance improvement potentials. In this review, the importance of the uniform distribution of spent catalysts through structural modification and operational manipulations of the catalyst distributor is discussed. The knowledge of the role of baffles in enhancing excellent gas–solid interaction has been increasing, but skepticism due to its complex hydrodynamic effects on gas–solid flows fends off operators from its application, a critical evaluation of its implication in the regenerators is covered. The understanding of the contribution of air/steam distributor design and feed gas injection techniques for even contact with spent catalyst leading to the improvement in FCC performance is also investigated. The reliability of FCC components is a big concern, as unplanned shutdown and enormous economic losses are being witnessed due to device failure. To this end, mitigation approaches to damaging afterburn and high-temperature erosion problems with respect to process control and geometric adjustment in the bed, freeboard, cyclone separators and collection ducts are explored. Emission limits for fluid catalytic cracking unit (FCCU) and products are consistently ratcheting downward; the commingled turnkey solutions to reducing pollutants generation are also reviewed.
Fluid catalytic cracking (FCC) is the workhorse of modern crude oil refinery. Its regenerator plays a critical role in optimizing the overall profitability by efficiently restoring the catalyst activity and enhancing the heat balance in the riser reactor. Improvement in the device metallurgy and process operations have enabled industrial regenerators to operate at high temperatures with better a coke burning rate and longer operating cycle. Today, the carbon content of regenerated catalyst has drastically reduced to less than 0.1 wt.%. However, the unit is still plagued with operational complexities and insufficient understanding of the underlying dynamic, multiscale intricacies. Recent process-intensification strategies provide insights into regenerator performance improvement potentials. In this review, the importance of the uniform distribution of spent catalysts through structural modification and operational manipulations of the catalyst distributor is discussed. The knowledge of the role of baffles in enhancing excellent gas–solid interaction has been increasing, but skepticism due to its complex hydrodynamic effects on gas–solid flows fends off operators from its application, a critical evaluation of its implication in the regenerators is covered. The understanding of the contribution of air/steam distributor design and feed gas injection techniques for even contact with spent catalyst leading to the improvement in FCC performance is also investigated. The reliability of FCC components is a big concern, as unplanned shutdown and enormous economic losses are being witnessed due to device failure. To this end, mitigation approaches to damaging afterburn and high-temperature erosion problems with respect to process control and geometric adjustment in the bed, freeboard, cyclone separators and collection ducts are explored. Emission limits for fluid catalytic cracking unit (FCCU) and products are consistently ratcheting downward; the commingled turnkey solutions to reducing pollutants generation are also reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.