PurposeBuilding elements that are damaged by fire are often strengthened by fiber wrapping techniques. Self-compacting concrete (SCC) is an advanced building material that is widely used in construction due to its ability to flow and pass through congested reinforcement and fill the required areas easily without compaction. The aim of the research work is to examine the flexural behavior of SCC subjected to elevated temperature. This research work examines the effect of natural air cooling (AC) and water cooling (WC) on flexural behavior of M20, M30, M40 and M50 grade fire-affected retro-fitted SCC. The results of the investigation will enable the designers to choose the appropriate repair technique for improving the service life of structures.Design/methodology/approachIn this study, an attempt has been made to evaluate the flexural behavior of fire exposed reinforced SCC beams retrofitted with laminates of carbon fiber reinforced polymer (CFRP), basalt fiber reinforced polymer (BFRP) and glass fiber reinforced polymer (GFRP). Beam specimens were cast with M20, M30, M40 and M50 grades of SCC and heated to 925ºC using an electrical furnace for 60 min duration following ISO 834 standard fire curve. The heated SCC beams were cooled by either natural air or water spraying.FindingsThe reduction in the ultimate load carrying capacity of heated beams was about 42% and 55% for M50 grade specimens that were cooled by air and water, respectively, in comparison with the reference specimens. The increase in the ultimate load was 54%, 38% and 27% for the specimens retrofitted with CFRP, BFRP and GFRP, respectively, compared with the fire-affected specimens cooled by natural air. Water-cooled specimens had shown higher level of damage than the air-cooled specimens. The specimens wrapped with carbon fiber could able to improve the flexural strength than basalt and glass fiber wrapping.Originality/valueSCC, being a high performance concrete, is essential to evaluate the performance under fire conditions. This research work provides the flexural behavior and physical characteristics of SCC subjected to elevated temperature as per ISO rate of heating. In addition attempt has been made to enhance the flexural strength of fire-exposed SCC with wrapping using different fibers. The experimental data will enable the engineers to choose the appropriate material for retrofitting.