Fire represents one of the significant hazards encountered by civil infrastructures, and thus providing appropriate fire safety measures is a major requirement in a building design for ensuring the safety of the occupants. Minimizing fire-induced damage and collapse of structural systems are the primary objectives in the design of concrete structures. An experimental investigation has been carried out to examine the mechanical properties such as compressive, tensile and flexural strengths of concrete exposed to elevated temperature following standard fire curve as per ISO 834. Capacity-based standards have been formulated to predict the residual strength of various grades of concrete exposed to various duration of heating. Stress strain behaviour, elastic modulus, weight loss, spalling and thermal crack pattern of specimens were also investigated. Water–cement ratio and porosity of concrete were found to be the critical factors for strength loss of concrete. A relationship is established between weight loss and strength loss of concrete. Higher grades of concrete were found to have more weight and strength loss than those of lower grades.
Purpose This paper aims to explain the influence of Standard Fire as per ISO 834 on the strength and microstructure properties of concrete specimens with different strength grade. Design/methodology/approach The strength grades of concrete considered for the experimental investigation were Fck20, Fck30, Fck40 and Fck50. The specimens were heated up to 1, 2, 3 and 4 h as per standard fire curve. Effect of elevated temperature on compressive and flexural behavior of specimens with various strength grades was examined. Effects of age of concrete, weight loss, surface characteristics and thermal crack pattern were also investigated. Findings Experimental investigation shows that strength grade, duration of exposure and age of concrete are the key parameters affecting the residual strength of concrete. For the beams exposed to 3 and 4 h of heating, the residual flexural strength was found to be so insignificant that the specimens were not able to even sustain their own weight. The loss in compressive and flexural strength of Fck50 concrete specimens heated up to 1 h were found to be 26.41 and 86.03 per cent of the original unheated concrete, respectively. The weight loss was found to be more for higher grade concrete specimens, and it was about 8.38 per cent for Fck50 concrete. Regression analysis was carried out to establish the empirical relation between residual strength and grade of concrete. Scanning electron microscopy and thermogravimetric analysis were carried out to examine the damage level of fire-affected concrete specimens. Originality/value Empirical relationship was developed to determine the residual strength of concrete exposed to elevate temperature, and this will be useful for design applications. This database may be useful for identifying member strength of reinforced beams subjected to various durations of heating so that suitable repair technique can be adopted from the available database. It will be useful to identify the proper grade of concrete with regard to fire endurance, in the case of concrete under compression or flexure.
Structural concrete has become a highly preferable building material in the construction industry due to its versatile characteristics, such as workability, strength, and durability. When concrete structures are exposed to fire, the mechanical properties of concrete degrade significantly. The research on the residual mechanical properties of concrete after exposure is necessary, particularly for the repair and rehabilitation of concrete elements and for the stability of the infrastructure. Factors, such as the grade of concrete, the effect of temperature exposure, and rapid water cooling, affect the residual strength characteristics of concrete. Considering these factors, the present investigation evaluates the mechanical properties of concrete using different grades, such as those ranging from 20 to 50 MPa, with an increment of 10 MPa. The specimens were exposed to different durations of fire from 15 to 240 min, following the standard rate of heating. A loss of strength was observed after fire exposure for all the grades of concrete. The rate of reduction in tensile and flexural strengths of the concrete was greater than that of compressive strength. The experimental results also showed that the strength reduction is greater for M50 than M20 concrete concerning the duration of heating. A microstructure evaluation confirmed the extent of damage to concrete under varied temperature conditions.
Purpose The purpose of this study is to investigate the effect of standard fire on the strength and microstructure properties of concrete with different strength grades. Design/methodology/approach Different strength grades of concrete used for the investigation are M20, M30, M40 and M50. An electrical bogie hearth furnace was developed to simulate the International Standards Organization 834 standard fire curve.Concrete samples were subjected to high temperatures of 925, 1,029, 1,090 and 1,133°C for the duration of 1, 2, 3 and 4 h, respectively, as per standard fire curve. Compressive strength, tensile strength, thermal crack pattern and spalling of heated concrete specimens were evaluated by experimental investigation. Scanning electron microscopy and thermo-gravimetric analysis were performed to investigate the microstructure properties of heated concrete specimens. Findings Test results indicated reduction in the strength and changes in the microstructure properties of concrete exposed to elevated temperature. The degree of weight and the strength loss were found to be higher for concrete with higher grades. An empirical relation is proposed to determine the residual strength of concrete with different strength grade using regression analysis. Social implications Results of this research will be useful for the design engineers to understand the behavior of concrete exposed to elevated temperature as per standard fire. Originality/value When concrete is exposed to elevated temperature, its internal microstructure changes, thereby strength and durability of concrete deteriorates. The performance of concrete with different strength grade exposed to standard fire is well understood. This research’s findings will be useful for the designers to understand more about fire resistance of concrete. A simple relationship is proposed to determine the residual strength of concrete exposed to various durations of heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.