This paper aimed to perform systematical study on the distribution of landslide thrust in pile-anchor support system, which has been a widely applicable treatment method in landslide control with safety, highly efficiency and adaptation. The advantage of photoelastic technique is visualization of strain and stress fields, therefore photoelastic model tests are conducted to show the distribution of landslide thrust in pile-anchor structure before failure in landslide. The effects of different materials and pile lengths are investigated by 6 photoelastic test cases under different loading conditions. It can be found from quantitative analysis of experimental results that load proportion of anchor would increase gradually with the decrease of pile embedded depth or the increase of landslide thrust force. Meanwhile, landslide thrust distribution in pile-anchor structure is directly affected by the stiffness of piles. The pile-anchor structure is significantly better at reducing bending moment value and optimizing bending moment distribution of pile. Finally, some theoretical analysis and design suggestions are proposed based on the experimental study.