Offshore wind turbines play a key part in the renewable energy strategy in the UK and Europe as well as in other parts of the world (for example, China). The majority of current developments, certainly in UK waters, have taken place in relatively shallow water and close to shore. This limits the scale of the engineering to relatively simple structures, such as those using monopile foundations, and these have been the most common design to date, in UK waters. However, as larger turbines are designed, or they are placed in deeper water, it will be necessary to use multi-footing structures such as tripods or jackets. For these designs, the tension on the upwind footing becomes the critical design condition. Driven pile foundations could be used, as could suctioninstalled foundations. However, in this paper, we present another concept-the use of helical pile foundations. These foundations are routinely applied onshore where large tension capacities are required. However, for use offshore, a significant upscaling of the technology will be needed, particularly of the equipment required for installation of the piles. A clear understanding of the relevant geotechnical engineering will be needed if this upscaling is to be successful.