Electrochemical discharge machining has been proved to be efficient micro-machining process and significantly used for the machining of non-conductive materials. The miniaturized products have gained advantages in Lab-on-a-chip devices and microelectromechanical system because of advancement in technology. The challenge to produce micro features has been suitably addressed by electrochemical discharge machining and emerged as potential contender in generating micro holes and micro channels on electrically non-conductive materials. This article includes state-of-art review on different domains of electrochemical discharge machining, which includes work piece, electrolyte, behaviour of tool electrode, gas film formation, machining quality along with recent hybridizations in electrochemical discharge machining process. The conclusion focuses or summarizes the future research trends for enhancement of electrochemical discharge machining efficiency and tackles problems encountered in machining.