Organ transplantation is still affected by a notable degree of preservation-associated ischemia and reperfusion injury, which can seriously hamper early graft function. The increasing extension of the criteria for donor organ acceptance, especially for organs that have suffered from periods of warm ischemic injury prior to graft retrieval, results in even higher demands on preserving these ischemia-sensitive grafts. Growing attention is thus directed towards more dynamic preservation methods instead of simple static storage. Particularly in grafts that are retrieved after cardiac standstill of the donor, provision of oxygen to enable some kind of regenerative metabolism appears to be desirable, although the optimal temperature for oxygenated preservation/revitalization is still under debate. Hybrid solutions, comprising conventional cold storage for ease of graft procurement and transportation together with more sophisticated ‘in-house' reconditioning protocols after arrival at the implantation clinic, might help to minimize graft injury during the critical transition from preservation to reperfusion. © 2014 S. Karger AG, Basel