The paper presents the results related to the simulation of dust-separating tangential cyclones: single cyclones of various geometries, and an axial multi-cyclone with fixed geometries and components. Its goal was to apply low-cost analyses for cyclones in industrial realization. Therefore, the presented research was applied with simulation methodology as a problem of Computational Fluid Dynamics. The models were analyzed using SolidWorks Flow Simulation software. The presented dust collectors are real-life objects, applied in industrial facilities. For a multi-cyclone, the increase in the number of blades, from 5 to 8, together with the change in the angle of a blade’s pitch i.e., 30° and 45°, resulted in dust concentration along the internal walls from just 10% for 5 blades up to c.a. 37.5% for 6 blades, and c.a. 50% for 8 blades, whereas the dust concentration in the device’s central part equals c.a. 20% for the last option. The model validation draws attention to the potential applicability of the software in flow issues alongside common and more complex numerical environments.