Terahertz (THz) imaging technology has received increased attention in recent years and has been widely applied, whereas the three-dimensional (3D) imaging for moving targets remains to be solved. In this paper, an adaptive 3D imaging scheme is proposed based on a single input and multi-output (SIMO) interferometric inverse synthetic aperture radar (InISAR) imaging system to achieve 3D images of moving targets in THz band. With a specially designed SIMO antenna array, the angular information of the targets can be determined using the phase response difference in different receiving channels, which then enables accurate tracking by adaptively adjusting the antenna beam direction. On the basis of stable tracking, the high-resolution imaging can be achieved. A combined motion compensation method is proposed to produce well-focused and coherent inverse synthetic aperture radar (ISAR) images from different channels, based on which the interferometric imaging is performed, thus forming the 3D imaging results. Lastly, proof-of-principle experiments were performed with a 0.2 THz SIMO imaging system, verifying the effectiveness of the proposed scheme. Non-cooperative moving targets were accurately tracked and the 3D images obtained clearly identify the targets. Moreover, the dynamic imaging results of the moving targets were achieved. The promising results demonstrate the superiority of the proposed scheme over the existing THz imaging systems in realizing 3D imaging for moving targets. The proposed scheme shows great potential in detecting and monitoring moving targets with non-cooperative movement, including unmanned military vehicles and space debris.