Slurry balancing shield construction is a method in which slurry pressure and groundwater pressure are balanced to achieve stability of excavation working face. It is widely used in tunnel construction due to its safety and high-efficiency characteristics. At present, research on safety risk management of slurry balancing shield construction is relatively lacking, and most scholars still mainly focus on technical research. In this paper, based on system engineering theory and from the perspective of whole construction process, a comprehensive evaluation index system for shield construction risk analysis is built by taking “human-machine-material-method-environment” as assessment dimensions. This paper modifies the existing analytic hierarchy process (AHP), combines AHP with fuzzy synthetic evaluation to build a risk analysis model, and quantifies the construction risk by evaluation set and matrix. Combined with case study, the effectiveness of the proposed model is verified, and measures to mitigate safety risks of slurry shield construction are proposed from perspectives of management, economy, and technology. This paper evaluates the overall risk level of project from a systematic perspective, which is an extension of traditional technology-oriented research.