The performance and hydrodynamic behavior of centrifugal pumps when handling two-phase liquid-liquid flow and emulsion remain relatively unexplored, although they are of fundamental importance in optimizing the operating conditions of these pumps. Hence, this study aims at investigating the performance degradation of a centrifugal pump under emulsion flow by combined means of analytical and computational fluid dynamic (CFD) models. The analytical approach is based on internal energy loss equations while the CFD approach models the emulsion as a continuous and homogeneous single-phase fluid exhibiting shear thinning behavior. The results give a good insight into the performance degradation of such a system, especially at the best efficiency point (BEP).