The heat transfer of supercritical fluids is a vastly growing field, specifically to find suitable alternative to replace conventional R134a, which can be beneficial for climate change. A considerable suggestion is R515A which possesses considerably lower global warming potential. The present simulations are designed to study supercritical fluid R515A under cooling conditions in horizontal position. The effect of pressure, mass flux, heat flux and tube diameter were considered for horizontal tube in the vicinity of pseudo critical temperature. Numerical investigations on heat transfer characteristics of supercritical fluid R515A were performed using widely used shear-stress transport (SST) model. Moreover, heat transfer correlations were developed and suggested to accurately predict Nusselt number within 10% accuracy. The simulation results showed about 3.98% average absolute deviation.