The axial compression behaviour of fibre-reinforced polymer (FRP)-confined concrete-core-encased rebar (FCCC-R) was investigated by performing monotonic axial compression tests on seven groups of FCCC-R specimens and three groups of pure rebar specimens. The research parameters considered were the FRP winding angle (0°, ±45°, and 90°), number of layers (2, 4, and 6 layers), and slenderness ratio of specimens (15.45, 20, and 22.73). The test results showed that FCCC-R’s axial compression behaviour improved significantly compared with pure rebar. The axial load–displacement curves of the FCCC-R specimens had a second ascending branch, and their carrying capacity and ductility were enhanced substantially. The best buckling behaviour was observed for the FRP winding angle of 90°. The capacity and ductility of the specimens were positively related to the number of FRP-wrapped layers and inversely related to the slenderness ratio of the specimens. A finite element model of FCCC-R was constructed and agreed well with the test results. The finite element model was used for parametric analysis to reveal the effect of the area ratio, FRP confinement length, internal bar eccentricity, and mortar strength on the axial compression behaviour of FCCC-R. The numerical results showed that the area ratio had the most significant impact on the axial compression behaviour of FCCC-R. The confinement length of the FRP pipe and internal bar eccentricity had similar effects on the axial compression behaviour of FCCC-R. Both of them had a significant impact on the second ascending branch, with the post-peak behaviour exhibiting minimal differences. The influence of mortar strength on the axial compression behaviour of FCCC-R was observed to be minimal.