Modern fiber-reinforced polymer (FRP)-reinforced concrete structures are excepted to achieve superior mechanical performances and long service lives, even in harsh service environments. Hybrid FRP material could potentially meet this goal with its relatively high strength-to-cost ratio. This paper presents an experimental study on the compressive behavior of concrete cylinders confined by a novel hybrid fiber-reinforced polymer (HFRP) spiral. Nine types, forming a total of 27 confined or non-confined concrete cylinders, were subjected to an axial compressive-loading test. Concrete cylinders confined either with different spiral types or different spiral spacings were comparatively studied in the experiment. The results showed that the compressive failure modes and the stress–strain relationships of the HFRP-spiral-confined cylinders were similar to those of basalt-fiber-reinforced polymer (BFRP)-spiral-confined cylinders. The actual fracture strain of the HFRP spiral (tested as a single rod) was larger than that of the corresponding carbon-fiber-reinforced polymer (CFRP) bar, indicating the advantageous composite effect of the HFRP spiral. The maximum strain of the HFRP spiral reached over 70% of its ultimate strain in the cylinders compared to the BFRP spiral, which only reached 50%. Most of the existing models overestimated the ultimate stress and strain of the HFRP-spiral-confined cylinders. Wu’s model was proved to be the most accurate model, yet proper modification was required for predicting the peak strain of the HFRP-confined cylinders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.