Pile foundations of long-span bridges are often deeply buried in soil, and their structural condition is difficult to accurately diagnose by conventional methods. To address this issue, a method for diagnosing the structural condition of bridge pile foundations based on the spatial correlation of high-density strain measurement points is proposed. The strain data of the high-density measurement points of a bridge pile foundation are obtained by using distributed optical fiber sensing technology based on Brillouin scattering, and then an algorithm for diagnosing the structural condition of the pile foundation based on geographically weighted regression analysis is presented. On this basis, aiming at the scour of the pile foundation of long-span bridges, an algorithm for estimating the scour depth of the pile foundation based on sliding plane clustering is proposed. Finally, the effectiveness of the proposed method is verified by numerical simulation and actual bridge data.