The offshore wind energy (OWE) pile foundation is mainly a large diameter open-ended single pile in shallow water, which has to bear long-term horizontal cyclic loads such as wind and waves during OWE project lifetime. Under the complex cyclic loads, the stress and displacement fields of the pile-soil system change continuously, which affects the dynamic characteristics of the pile foundation. Within the service life of the pile foundation, the pile-soil system has irreversible cumulative deformation, which further causes damage to the whole structure. Therefore, it is important to examine the overall dynamic characteristics of wind power foundation under high cycle. In this paper, in the dry sand foundation, taking the Burbo Bank 3.6 MW offshore turbine-foundation structure as the prototype, the horizontal cyclic loading model tests of the wind power pile foundation with the scale of 1:50 were carried out. Considering the factors such as loading frequency and cyclic load ratio, the horizontal dynamic characteristics of the whole OWE pile foundation are studied. The comparison results between the maximum bending moment of pile and the fitting formula are discussed. In conclusion, moment of OWE pile shaft is corresponding to the loading frequency (f = 9 HZ) and loading cycles by fitting formulas. The fatigue damage of the OWE pile does not occurs with low frequencies in high cycles.
The evaluation of wave-induced residual pore pressure in a porous seabed and associated seabed liquefaction is essential for designing marine infrastructure foundations. The strength and stiffness of the seabed could be weakened due to the build-up of pore pressures under cyclic wave action, further leading to residual liquefaction. Existing models for residual liquefaction are limited to the quasi-static uncoupled approaches, which do not account for the effect of oscillatory pore pressure on the accumulative pore pressure acceleration of solid particles, despite the mutual influence of these two mechanisms. To overcome these limitations, this paper proposes a new model for residual soil response with u−p approximation (partial dynamic model) that couples oscillatory and residual mechanisms. The proposed model is validated through wave flume tests and centrifuge tests. Based on the coupling model, a new criterion of liquefaction integrating both oscillatory and residual mechanisms is also proposed. Numerical examples demonstrate that the coupling effect significantly affects the wave-induced seabed liquefaction potential. Furthermore, a new parameter (Ω) representing the ratio of oscillatory and residual pore pressure is introduced to clarify which mechanism dominates the pore pressure development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.