Water vapor sorption is the most fundamental aspect of wood-moisture relations. It is directly or indirectly related to the physical properties of wood and the onset of wood-damage mechanisms. While sorption properties of cellulosic materials have been utilized since antiquity, the time-dependent transition from one moisture content to another (i.e., sorption kinetics) has received much less attention. In this critical review, we present the state-of-the-art of water vapor sorption kinetics in wood. We first examine different experimental methods that have been used to measure sorption kinetics, from the quartz helix vacuum balance beginning in earnest in the 1930s, to automated sorption balances used recently. We then give an overview of experimental observations and describe the physical phenomena that occur during the sorption process, which potentially govern the following kinetics: boundary layer mass transfer resistance, heat of sorption, cell wall diffusion, swelling, and polymer mobility. Finally, we evaluate theoretical models that have been proposed for describing sorption kinetics, considering both experimental data and the physical processes described in the previous section. It is clear that no previously developed model can phenomenologically describe the sorption process. Instead, new models are needed. We conclude that the development of new models will require more than simple gravimetric measurements. In addition to mass changes, complementary techniques are needed to probe other important physical quantities on multiple length scales.