Publication information Engineering Structures, 44 (44): 13-22Publisher Elsevier Item record/more information http://hdl.handle.net/10197/4858
Publisher's statementThis is the author's version of a work that was accepted for publication in Engineering Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Engineering Structures (44, , (2012)
AbstractMoving Force Identification (MFI) theory can be used to create an algorithm for a Bridge Weigh-in-Motion (WIM) system that can produce complete force histories of the loads that have traversed a bridge structure. MFI is based on general inverse theory, however, and calibration of such a system requires a complete Finite Element (FE) model of the bridge to be available for implementation in the field. This is something that is often infeasible in practice as FE models created using theoretical values for material properties bear a poor relation to reality. The Cross-Entropy optimisation method has been adapted here to address this calibration problem. The general system FE global mass and stiffness matrices of the bridge FE model are found by best fit optimisation to match field measurements. In this fashion a fully automated calibration procedure is developed for an MFI algorithm. This system is tested theoretically using three different FE plate models, coupled with a threedimensional vehicle model, allowing for Vehicle Bridge Interaction (VBI).