We propose a novel teleoperation framework for multiple distributed non-holonomic mobile robots (WMR), each equipped with onboard sensing and computing using peer-to-peer communication. One of the WMRs is designated as the leader with the first-person view camera and SLAM, while the other WMRs maintain a certain desired formation relative to their respective fore-running WMR in a distributed manner. For this, we first utilize nonholonomic passive decomposition to split the platoon kinematics into that of the formation-keeping aspect and the collective tele-driving aspect. We then design the controls for these two aspects individually and distribute them into each WMR while incorporating their nonholonomic constraint and distribution requirement. We also propose a novel predictive display, which, by providing the user with the estimated current and predicted future pose of the platoon and future possibility of collision while incorporating the uncertainty inherent to the distribution, can significantly enhance the tele-driving performance. Experiments and user study are also performed.