This work extends the algebraic expression of influence coefficients developed for onedimensional aquifer models to a two-dimensional (2-D) case. First, the partial differential equation governing the flow in a 2-D semi-confined aquifer is discretized using a finite difference scheme. This results in a system of discrete equations presented in the form of water balance equations associated with a network of interconnected compartments centred on the grid nodes. The foregoing system is transformed into a series of uncoupled 1-D equations stated in terms of some generalized hydraulic head for which they are also solved. Second, the original hydraulic head is recovered from the generalized one via an appropriate linear transformation. Whence, the algebraic expression making the hydraulic head explicit versus sources and boundary conditions is derived. This discrete expression, mapped onto its continuous counterpart, helps to deduce an algebraic form of the inter-compartment influence coefficients. Finally, a comparison with the analytical Green function is carried out.Keywords influence coefficients; two-dimensional semi-confined aquifer; compartmental approach; Green function
Coefficients d'influence algébriques explicites: modèle d'aquifère bidimensionnelRésumé Ce travail généralise les expressions algébriques des coefficients d'influence développées pour un modèle d'aquifère semi-confiné et mono-dimensionnel, au cas bidimensionnel (2-D). L'équation aux dérivées partielles gouvernant l'écoulement dans un aquifère semi-confiné bidimensionnel est discrétisée en utilisant la méthode des différences finies. Il en résulte un système d'équations aux différences présentées sous forme de bilan massique associé à un réseau de compartiments interconnectés et centrés sur les noeuds de discrétisation. Le système en question est à son tour transformé en une série d'équations aux différences mono-dimensionnelles et découplées exprimées en fonction dudit potentiel hydraulique généralisé, par rapport auquel elles sont aussi résolues. Ensuite, le potentiel hydraulique est retrouvé à partir du potentiel généralisé, en appliquant une transformation linéaire appropriée. L'expression algébrique explicitant le potentiel hydraulique en fonction des sources et des conditions aux limites en est déduite. Celle-ci, mise sous une forme similaire à la solution continue, permet d'extraire l'expression algébrique des coefficients d'influence inter-compartiments. Finalement, une comparaison avec l'expression analytique de la fonction de Green est réalisée.