Graphics processing units (GPUs) are gradually becoming mainstream in high-performance computing, as their capabilities for enhancing performance of a large spectrum of scientifi c applications to many fold when compared to multi-core CPUs have been clearly identifi ed and proven. In this paper, implementation and performance-tuning details for porting an explicit marching-on-in-time (MOT)-based time-domain volume-integral-equation (TDVIE) solver onto GPUs are described in detail. To this end, a high-level approach, utilizing the OpenACC directive-based parallel programming model, is used to minimize two often-faced challenges in GPU programming: developer productivity and code portability. The MOT-TDVIE solver code, originally developed for CPUs, is annotated with compiler directives to port it to GPUs in a fashion similar to how OpenMP targets multi-core CPUs. In contrast to CUDA and OpenCL, where signifi cant modifi cations to CPU-based codes are required, this high-level approach therefore requires minimal changes to the codes. In this work, we make use of two available OpenACC compilers, CAPS and PGI. Our experience reveals that different annotations of the code are required for each of the compilers, due to different interpretations