This paper examines the travelers’ day-to-day route-choice behavior with Advanced Traveler Information Systems (ATIS) through laboratory-like experimental method. Five groups of route-choice behavior experiments are designed to simulate actual daily behavior of travelers. In the experiment, subjects are provided with different levels of the complete road network information to simulate the proportion of subjects equipped with ATIS equipment (i.e., ATIS market penetration) and choose the routes repeatedly. The subject’s route-choice behavior under different proportions of complete road network information is analyzed, and the strategy of releasing such complete information is determined when the performance of road network system is the best. The Braess network which consists of three routes was used in the experiment and analysis. The results show that the fluctuation of traffic flow runs through the entire experiments, but it tends to converge to user equilibrium. When the market penetration is 75%, both the fluctuation of traffic flow and the tendency of subjects to change routes are the smallest, so the road network system is the most stable. This interesting result indicates that releasing traffic information to all travelers is not the best. Other results show that the travel times of the three routes in the five groups of experiments tend to converge to and finally fluctuate around user-equilibrium travel time. With the increase in ATIS market penetration, the average travel time of subjects in each round tends to increase. The overall trend of the five groups of experiments is that as the number of route switches increases, the average travel time increases. The results also indicate that releasing traffic information to all travelers cannot weaken the Braess Paradox. On the contrary, the more travelers are provided with traffic information, the less likely it will weaken the Braess Paradox.