As autonomous vehicles (AVs) need to interact with other road users, it is of importance to comprehensively understand the dynamic traffic environment, especially the future possible trajectories of surrounding vehicles. This paper presents an algorithm for long-horizon trajectory prediction of surrounding vehicles using a dual long short term memory (LSTM) network, which is capable of effectively improving prediction accuracy in strongly interactive driving environments. In contrast to traditional approaches which require trajectory matching and manual feature selection, this method can automatically learn high-level spatial-temporal features of driver behaviors from naturalistic driving data through sequence learning. By employing two blocks of LSTMs, the proposed method feeds the sequential trajectory to the first LSTM for driver intention recognition as an intermediate indicator, which is immediately followed by a second LSTM for future trajectory prediction. Test results from real-world highway driving data show that the proposed method can, in comparison to state-of-art methods, output more accurate and reasonable estimate of different future trajectories over 5s time horizon with root mean square error (RMSE) for longitudinal and lateral prediction less than 5.77m and 0.49m, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.