Amyloidogenic model peptides are invaluable for investigating assembly mechanisms in disease related amyloids and in protein folding. During aggregation, such peptides can undergo bifurcation leading to fibrils or crystals, however the mechanisms of fibril-to-crystal conversion are unclear. We navigate herein the energy landscape of amyloidogenic peptides by studying a homologous series of hexapeptides found in animal, human and disease related proteins. We observe fibril-to-crystal conversion occurring within single aggregates via untwisting of twisted ribbon fibrils possessing saddle-like curvature and cross-sectional aspect ratios approaching unity. Changing sequence, pH or concentration shifts the growth towards larger aspect ratio species assembling into stable helical ribbons possessing mean-curvature. By comparing atomistic calculations of desolvation energies for association of peptides we parameterise a kinetic model, providing a physical explanation of fibril-to-crystal interconversion. These results shed light on the self-assembly of amyloidogenic peptides, suggesting amyloid crystals, not fibrils, represent the ground state of the protein folding energy landscape.
Domain adaptation between diverse source and target domains is challenging, especially in the real-world visual recognition tasks where the images and videos consist of significant variations in viewpoints, illuminations, qualities, etc. In this paper, we propose a new approach for domain generalization and domain adaptation based on exemplar SVMs. Specifically, we decompose the source domain into many subdomains, each of which contains only one positive training sample and all negative samples. Each subdomain is relatively less diverse, and is expected to have a simpler distribution. By training one exemplar SVM for each subdomain, we obtain a set of exemplar SVMs. To further exploit the inherent structure of source domain, we introduce a nuclear-norm based regularizer into the objective function in order to enforce the exemplar SVMs to produce a low-rank output on training samples. In the prediction process, the confident exemplar SVM classifiers are selected and reweigted according to the distribution mismatch between each subdomain and the test sample in the target domain. We formulate our approach based on the logistic regression and least square SVM algorithms, which are referred to as low rank exemplar SVMs (LRE-SVMs) and low rank exemplar least square SVMs (LRE-LSSVMs), respectively. A fast algorithm is also developed for accelerating the training of LRE-LSSVMs. We further extend Domain Adaptation Machine (DAM) to learn an optimal target classifier for domain adaptation, and show that our approach can also be applied to domain adaptation with evolving target domain, where the target data distribution is gradually changing. The comprehensive experiments for object recognition and action recognition demonstrate the effectiveness of our approach for domain generalization and domain adaptation with fixed and evolving target domains.
In this paper, we propose a new approach to improve face verification and person re-identification in the RGB images by leveraging a set of RGB-D data, in which we have additional depth images in the training data captured using depth cameras such as Kinect. In particular, we extract visual features and depth features from the RGB images and depth images, respectively. As the depth features are available only in the training data, we treat the depth features as privileged information, and we formulate this task as a distance metric learning with privileged information problem. Unlike the traditional face verification and person re-identification tasks that only use visual features, we further employ the extra depth features in the training data to improve the learning of distance metric in the training process. Based on the information-theoretic metric learning (ITML) method, we propose a new formulation called ITML with privileged information (ITML+) for this task. We also present an efficient algorithm based on the cyclic projection method for solving the proposed ITML+ formulation. Extensive experiments on the challenging faces data sets EUROCOM and CurtinFaces for face verification as well as the BIWI RGBD-ID data set for person re-identification demonstrate the effectiveness of our proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.