2020
DOI: 10.1002/htj.22023
|View full text |Cite
|
Sign up to set email alerts
|

Exploration of irreversibility and thermal motion of a nanoliquid with the Newton boundary condition by using the Darcy–Forchheimer rule

Abstract: This study has been conducted to focus on magnetohydrodynamic flow of a nanoliquid through a microchannel in the presence of a magnetic field. In this article, carbon nanotubes suspended in an aqueous medium were our considered fluid, and we focused on both singlewall and multiwall carbon nanotubes. The numerical calculations have been made via the fourth‐ and fifth‐order Runge–Kutta–Fehlberg method. The flow of the nanoliquid in a microchannel with porosity has been scrutinized with the existence of mutual ef… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
9
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

2
3

Authors

Journals

citations
Cited by 7 publications
(9 citation statements)
references
References 37 publications
0
9
0
Order By: Relevance
“…Under the above presumption, the governing equations of the momentum, microrotation, energy, entropy generation, and Bejan number are as follows 4,37 : ρnfν0duitalicfalse′dyitalicfalse′=dpitalicdxitalicfalse′+(μnf+q)d2ufalse′dy2+qdNfalse′dyfalse′σnfB02ufalse′+false(ρβ)nfg*false(Tfalse′Tafalse)sinλμnfLufalse′ρnfFufalse′2L, ${\rho }_{\mathrm{nf}}{\nu }_{0}\frac{du{^{\prime} }}{dy{^{\prime} }}=-\frac{{dp}}{{dx}{^{\prime} }}+({\mu }_{\mathrm{nf}}+q)\frac{{d}^{2}u^{\prime} }{dy{{\prime} }^{2}}+q\frac{dN^{\prime} }{dy^{\prime} }-{\sigma }_{\mathrm{nf}}{B}_{0}^{2}u^{\prime} +({\rho \beta )}_{\mathrm{nf}}g* (T^{\prime} -{T}_{a}^{^{\prime} })\mathrm{sin\lambda }-\frac{{\mu }_{\mathrm{nf}}}{L}u^{\prime} -{\rho }_{\mathrm{nf}}\frac{F{u^{\prime} }^{2}}{\surd L},$ ρnfjν0dNitalicfalse′dyitalicfalse′=ηnfd2Nfalse′dyfalse′2q2Nfalse′+dufalse′dyfalse′, ${\rho }_{\mathrm{nf}}{j\nu }_{0}\frac{dN{^{\prime} }}{dy{^{\prime} }}={\eta }_{\mathrm{nf}}\frac{{d}^{2}N^{\prime} }{d{y^{\prime} }^{2}}-q\left(2N^{\prime} +\frac{du^{\prime} }{dy^{\prime} }\right),$ false(ρcp)nfν0dTfalse′dyitalicfalse′=knfd2Tfalse′dy2…”
Section: Mathematical Formulationmentioning
confidence: 99%
See 3 more Smart Citations
“…Under the above presumption, the governing equations of the momentum, microrotation, energy, entropy generation, and Bejan number are as follows 4,37 : ρnfν0duitalicfalse′dyitalicfalse′=dpitalicdxitalicfalse′+(μnf+q)d2ufalse′dy2+qdNfalse′dyfalse′σnfB02ufalse′+false(ρβ)nfg*false(Tfalse′Tafalse)sinλμnfLufalse′ρnfFufalse′2L, ${\rho }_{\mathrm{nf}}{\nu }_{0}\frac{du{^{\prime} }}{dy{^{\prime} }}=-\frac{{dp}}{{dx}{^{\prime} }}+({\mu }_{\mathrm{nf}}+q)\frac{{d}^{2}u^{\prime} }{dy{{\prime} }^{2}}+q\frac{dN^{\prime} }{dy^{\prime} }-{\sigma }_{\mathrm{nf}}{B}_{0}^{2}u^{\prime} +({\rho \beta )}_{\mathrm{nf}}g* (T^{\prime} -{T}_{a}^{^{\prime} })\mathrm{sin\lambda }-\frac{{\mu }_{\mathrm{nf}}}{L}u^{\prime} -{\rho }_{\mathrm{nf}}\frac{F{u^{\prime} }^{2}}{\surd L},$ ρnfjν0dNitalicfalse′dyitalicfalse′=ηnfd2Nfalse′dyfalse′2q2Nfalse′+dufalse′dyfalse′, ${\rho }_{\mathrm{nf}}{j\nu }_{0}\frac{dN{^{\prime} }}{dy{^{\prime} }}={\eta }_{\mathrm{nf}}\frac{{d}^{2}N^{\prime} }{d{y^{\prime} }^{2}}-q\left(2N^{\prime} +\frac{du^{\prime} }{dy^{\prime} }\right),$ false(ρcp)nfν0dTfalse′dyitalicfalse′=knfd2Tfalse′dy2…”
Section: Mathematical Formulationmentioning
confidence: 99%
“…The fluid injection takes place at the bottom plate y a ′ = − and suction takes place at the upper plate y a ′ = . Under the above presumption, the governing equations of the momentum, microrotation, energy, entropy generation, and Bejan number are as follows 4,37 :…”
Section: Mathematical Formulationmentioning
confidence: 99%
See 2 more Smart Citations
“…Liu et al 29 studied the irreversibility rate of electro‐MHD flow over a rectangular curved channel. Gireesha et al 30 explored the molecular randomness in a channel system with a Forchheimer drag using carbon nanotube nanoparticles. Ignacio et al 31 analyzed the entropy generation in a permeable inclined channel with the effect of nonlinear thermal radiation.…”
Section: Introductionmentioning
confidence: 99%