An analysis has been carried out to study the effect of nonlinear thermal radiation on slip flow and heat transfer of fluid particle suspension with nanoparticles over a nonlinear stretching sheet immersed in a porous medium. Water is considered as a base fluid with dust particles along with suspended Aluminum Oxide (Al
This study has been conducted to focus on magnetohydrodynamic flow of a nanoliquid through a microchannel in the presence of a magnetic field. In this article, carbon nanotubes suspended in an aqueous medium were our considered fluid, and we focused on both singlewall and multiwall carbon nanotubes. The numerical calculations have been made via the fourth‐ and fifth‐order Runge–Kutta–Fehlberg method. The flow of the nanoliquid in a microchannel with porosity has been scrutinized with the existence of mutual effects, like, the nanoparticle volume fraction, suction or injection, thermal‐dependent heat source, convective boundary conditions, Darcy friction factor, and thermal motion of the nanoparticles. The influence of every major parameter on the profile of momentum, temperature, and entropy generation has been displayed graphically, and we discuss their physical aspects. The numerical outcomes demonstrated that the momentum profile augmented with the buoyancy force, angle of inclination, and Darcy number. Thermal energy was enriched with the heat source parameter, Darcy number, and Hartmann number. The irreversibility rate declined with the volume fraction of nanoparticle and radiation parameter, while it increases with the buoyancy force, Eckert parameter, and Darcy friction factor.
Numerical investigation for the effect of thermal stratification on MHD flow and heat transfer of dusty fluid over a vertical stretching sheet embedded in a thermally stratified porous medium in the presence of uniform heat source and thermal radiation. The governing equations for the problem were reduced in to dimensionless ordinary differential equations using suitable similarity transformations. The transformed nonlinear ordinary differential equations are numerically solved by applying efficient RungeKutta Fehlberg-45 Method with shooting technique. The effects of various flow controlling parameters such as Prandtl number, heat source/sink parameter, fluid particle interaction parameter, heat source parameter, radiation parameter on velocity and temperature distributions of both fluid and dust phases are depicted graphically. Finally, the numerical results are compared and found to be in good agreement with previously published results under special cases. The results indicate that the fluid phase velocity is always greater than that of the particle phase and thermal stratification significantly affects the surface shear stress as well as the surface heat transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.