The microstructural characteristic evolution was investigated during thermomechanical processing of Ti-29Nb-9Ta-10Zr (wt %) alloy, which consisted of, in a first stage, in a Multi-Pass Rolling with increasing thickness reduction of 20%, 40%, 60%, 80%, and 90%; in step two, the multi-pass rolled sample with the highest thickness reduction (90%) was subjected to a series of three variants of static short recrystallization and then to a final similar aging. The objective was to evaluate the microstructural features evolution during thermomechanical processing (phase’s nature, morphology, dimensions, and crystallographic characteristics) and to find the optimal heat treatment variant for refinement of the alloy granulation until ultrafine/nanometric level for a promising combination of mechanical properties. The microstructural features were investigated by X-ray diffraction and SEM techniques through which the presence of two phases was recorded: the β-Ti phase and the α″-Ti martensitic phase. The corresponding cell parameters, dimensions of the coherent crystallite and the micro-deformations at the crystalline network level for both recorded phases were determined. The majority β-Ti phase underwent a strong refinement during the Multi-Pass Rolling process until ultrafine/nano grain dimension (about 9.8 nm), with subsequent slow growing during recrystallization and aging treatments, hindered by the presence of sub-micron α″-Ti phase dispersed inside β-Ti grains. An analysis concerning the possible deformation mechanisms was performed.