One objective of this work was to study the corrosion resistance of the new implant Ti-10Zr-5Ta-5Nb alloy in physiological fluids of different pH values, simulating the extreme functional conditions. Another objective was in vitro biocompatibility evaluation of the new alloy using human fetal osteoblast cell line hFOB 1.19. Cytocompatibility was assessed by determination of possible material cytotoxic effects, cell morphology and cell adhesion. The thermo-mechanical processing of the new implant alloy consisted in plastic deformation (almost 90%) performed by hot rolling accompanied by an initial and final heat treatment. The new Ti-10Zr-5Ta-5Nb alloy presented self-passivation, with a large passive potential range and low passive current densities, namely, a very good anticorrosive resistance in Ringer solution of acid, neutral and alkaline pH values. Cell viability was not affected by the alloy substrate presence and a very good compatibility was noticed.
The crystallographic texture of Ti-29Nb-9Ta-10Zr alloy is studied after cold-rolling with different amounts of thickness reduction, up to 60%. The major texture components developed during cold-rolling were: γ-fibre components: {111}〈 〉, {111}〈 〉, {111}〈 〉 and {111}〈 〉; texture component: {112}〈 〉 and texture components: {001}〈 〉 and {010}〈001〉. Besides crystallographic texture the resulted mechanical properties were studied by nanoindentation. It was showed that the decrease in Young's modulus after different cold-rolling stages is mainly attributed to the stress-induced α″-Ti phase formation. At 60% cold-rolling thickness reduction obtained an elastic modulus close to 45.29±3.81 GPa, coupled with an average Vickers microhardness close to 279.83±4.28 HV.A similar evolution was obtained also in the case of Vickers microhardness (Fig. 9c), showing close microhardness values in comparison with HIT values (Fig. 9b).
The influence of complex thermo-mechanical processing (TMP) on the mechanical properties of a Ti-Nb-Zr-Fe-O bio-alloy was investigated in this study. The proposed TMP program involves a schema featuring a series of severe plastic deformation (SPD) and solution treatment (STs). The purpose of this study was to find the proper parameter combination for the applied TMP and thus enhance the mechanical strength and diminish the Young’s modulus. The proposed chemical composition of the studied β-type Ti-alloy was conceived from already-appreciated Ti-Nb-Ta-Zr alloys with high β-stability by replacing the expensive Ta with more accessible Fe and O. These chemical additions are expected to better enhance β-stability and thus avoid the generation of ω, α’, and α” during complex TMP, as well as allow for the processing of a single bcc β-phase with significant grain diminution, increased mechanical strength, and a low elasticity value/Young’s modulus. The proposed TMP program considers two research directions of TMP experiments. For comparisons using structural and mechanical perspectives, the two categories of the experimental samples were analyzed using SEM microscopy and a series of tensile tests. The comparison also included some already published results for similar alloys. The analysis revealed the advantages and disadvantages for all compared categories, with the conclusions highlighting that the studied alloys are suitable for expanding the database of possible β-Ti bio-alloys that could be used depending on the specific requirements of different biomedical implant applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.