Purpose of Review
Cardiac resynchronization therapy (CRT) represents a well-established and effective non-pharmaceutical heart failure (HF) treatment in selected patients. Still, a significant number of patients remain CRT non-responders. An optimal placement of the left ventricular (LV) lead appears crucial for the intended hemodynamic and hence clinical improvement. A well-localized target area and tools that help to achieve successful lead implantation seem to be of utmost importance to reach an optimal CRT effect.
Recent Findings
Recent studies suggest previous multimodal imaging (CT/cMRI/ECG torso) to guide intraprocedural LV lead placement. Relevant benefit compared to empirical lead optimization is still a matter of debate. Technical improvements in leads and algorithms (e.g., multipoint pacing (MPP), adaptive algorithms) promise higher procedural success. Recently emerging alternatives for ventricular synchronization such as conduction system pacing (CSP), LV endocardial pacing, or leadless pacing challenge classical biventricular pacing.
Summary
This article reviews current strategies for a successful planning, implementation, and validation of the optimal CRT implantation. Pre-implant imaging modalities offer promising assistance for complex cases; empirical lead positioning and intraoperative testing remain the cornerstone in most cases and ensure a successful CRT effect.