Mechanical properties of corn grains are of key importance in a design of processing machines whose energy demand depends on these properties. The aim of this study is to determine the selected mechanical properties of corn grains and the rupture energy. The research problem was formulated as questions: (1) How much force and energy is needed to induce a rupture of corn grain maintaining good quality of the product of processing (mixing, grinding transport)? (2) Can empirical distributions of the studied physical-mechanical properties be described by means of probability distributions provided by the literature? (3) Is there a relationship between the corn grain size and the selected mechanical properties, as well as rupture energy? In order to achieve the goals, the selected physical properties (size, volume) of corn grains have been distinguished and a static compression test has been carried out on an Instron 5966 testing machine. The results indicate a significant scatter of the results in terms of size, grain shape, forces, energy, and deformation corresponding to the point of inflection, bioyiled point, and rupture point. It has also been indicated that empirical distributions of the analyzed properties can be described by means of distributions known from the literature, e.g., gamma, Weibull or lognormal distributions. It has been confirmed that mechanical properties such as force, energy, and stress that cause rupture depend on the grain size, more precisely, the grain thickness—there are negative relations between thickness and force, energy and stress in relation to the point of inflection, bioyiled point, and rupture point.