Native mass spectrometry
(MS) involves the analysis and characterization
of macromolecules, predominantly intact proteins and protein complexes,
whereby as much as possible the native structural features of the
analytes are retained. As such, native MS enables the study of secondary,
tertiary, and even quaternary structure of proteins and other biomolecules.
Native MS represents a relatively recent addition to the analytical
toolbox of mass spectrometry and has over the past decade experienced
immense growth, especially in enhancing sensitivity and resolving
power but also in ease of use. With the advent of dedicated mass analyzers,
sample preparation and separation approaches, targeted fragmentation
techniques, and software solutions, the number of practitioners and
novel applications has risen in both academia and industry. This review
focuses on recent developments, particularly in high-resolution native
MS, describing applications in the structural analysis of protein
assemblies, proteoform profiling ofamong othersbiopharmaceuticals
and plasma proteins, and quantitative and qualitative analysis of
protein–ligand interactions, with the latter covering lipid,
drug, and carbohydrate molecules, to name a few.