Under water resource and terrain constraints, a certain scale threshold of irrigated and rainfed agricultural areas exists in semi-arid sandy areas. If this threshold is exceeded, water and soil resources will be unbalanced, and the ecological environment will deteriorate. Accurate assessment of the suitable scale of cultivated land in semi-arid sandy areas is of great significance for sustainable utilization of cultivated land resources and regional ecological security. Most existing research methods are based on water resource constraints and rarely consider terrain factors. Therefore, based on the principle of water balance and with the Horqin Left Wing Rear Banner as the research area, this study adopted a multi-objective fuzzy optimization model and relative terrain index analysis method to explore the appropriate spatial ratio of irrigation and rainfed agriculture. The results show that the area of irrigated agriculture in the study area is 77,700 hm2, and the appropriate scale is 91,700 hm2. The current area of dry farming is 184,600 hm2, and the suitable scale is 117,100 hm2. The results also show that the utilization efficiency of water and soil resources in irrigated agriculture was not optimal, rainfed agriculture exceeded its suitable scale, and water and soil resources were seriously unbalanced. However, the region of cultivated land that exceeds the appropriate scale is mostly located in an area with poor terrain, less precipitation, and other unsuitable conditions for cultivation, which is prone to abandonment, resulting in deterioration of the ecological environment. Therefore, the spatial layout of agricultural land use in the study area should be adapted to local conditions, and the water-saving structure of irrigated agriculture should be optimized to achieve the maximum comprehensive benefits. Dry farming should be controlled on a reasonable scale, and the part exceeding the appropriate scale should be returned to grassland to ensure sustainable development.