In this work, we examine first-order lattice dynamical systems, which are discretized versions of reaction-diffusion equations on the real line. We prove the existence of a global attractor in 2 , and using the method by Chueshov and Lasiecka (Dynamics of quasi-stable dissipative systems, Springer, Berlin, 2015; Memoirs of the American Mathematical Society, vol 195(912), AMS, 2008), we estimate its fractal dimension. We also show that the global attractor is contained in a finite-dimensional exponential attractor. The approach relies on the interplay between the discretized diffusion and reaction, which has not been exploited as yet for the lattice systems. Of separate interest is a characterization of positive definiteness of the discretized Schrödinger operator, which refers to the well-known Arendt and Batty's result (Differ Int Equ 6:1009-1024, 1993).