2019
DOI: 10.1016/j.jfranklin.2019.04.036
|View full text |Cite
|
Sign up to set email alerts
|

Exponential stability analysis for a class of neutral singular Markovian jump systems with time-varying delays

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
8
0
4

Year Published

2020
2020
2024
2024

Publication Types

Select...
7

Relationship

1
6

Authors

Journals

citations
Cited by 20 publications
(12 citation statements)
references
References 31 publications
0
8
0
4
Order By: Relevance
“…, and Π 2 , are defined in Appendix A. en, the reachable sets of system (1) with (2) and (3) are bounded by boundaries ∩ N i�1 I(P 1,i ), which is defined in (12).…”
Section: Journal Of Mathematicsmentioning
confidence: 99%
See 3 more Smart Citations
“…, and Π 2 , are defined in Appendix A. en, the reachable sets of system (1) with (2) and (3) are bounded by boundaries ∩ N i�1 I(P 1,i ), which is defined in (12).…”
Section: Journal Of Mathematicsmentioning
confidence: 99%
“…where (1) 44 � − 9R 6 e − αh 2 , π (1) 46 � 3R 6 e − αh 2 , π (1) 4,10 � − 24R 6 e − αh 2 , π (1) 4,12 � 60R 6 e − αh 2 , π (1) 66 � − 9R 6 e − αh 2 , π (1) 6,10 � 36R 6 e − αh 2 , π (1) 6,12 � − 60R 6 e − αh 2 , π (1) 10,10 � − 192R 6 e − αh 2 , π (1) 10,12 � 360R 6 e − αh 2 , π (1) 12,12 � − 720R 6 e − αh 2 , π (2) 44 � − 9R 6 e − αh 2 , π (2) 45 � 3R 6 e − αh 2 , π (2) 4,11 � − 24R 6 e − αh 2 , π (2) 4,13 � 60R 6 e − αh 2 , π (1) 55 � − 9R 6 e − αh 2 , π (2) 5,11 � 36R 6 e − αh 2 , π (2) 5,13 � − 60R 6 e − αh 2 , π (2) 11,11 � − 192R 6 e − αh 2 , π (2) 11,13 � 360R 6 e − αh 2 , π (2) 13,13 � − 720R 6 e − αh 2 , π (3) 44 � e − αh 2 sym Y 11 + sym…”
Section: Journal Of Mathematics 23unclassified
See 2 more Smart Citations
“…Motivated by some ideas and methods in [16,[32][33][34][35][36][37][38][39][40]46], we are to investigate the stability of a class of p-Laplacian diffusion T-S fuzzy system via variational methods that are different from those of existing literature related to reaction-diffusion fuzzy systems.…”
Section: Introductionmentioning
confidence: 99%