Screening mammography offers the possibility of discovering malignant diseases at an early stage, which is consequently treated early, thereby reducing the mortality rate. However, ionizing radiation as used in low-dose X-ray mammography may be associated with a risk of radiation-induced carcinogenesis. In the context of the harmful effects of ionizing radiation, this article reviewed novel radiobiological data and provided a simulation of the relative incidence of radiation-induced breast cancer due to screening against a background baseline incidence in a population of 100,000 individuals. The use of modern digital mammographic technology was assumed, giving rise to a glandular dose of 2.5 mGy from a 2-view per breast image. Assuming no latency time, this led to a ratio of induced incidence rate over baseline incidence rate of about 1.6‰ for biennial screening in women aged 50-74 years, although it cannot be excluded that the dose and dose rate effectiveness factor values relying on new radiobiological insights may lower this number to about 0.7‰. This carcinogenic risk is considered small in relation to the potential beneficial effects of screening, especially as latency time was not taken into consideration. However, individuals who are known to be carriers of risk-increasing genetic variations and/or have an inherited disposition of breast cancer should avoid ionizing radiation as much as possible and should be referred to ultrasound or magnetic resonance imaging. In addition, a significant, but difficult to quantify, risk of cancer is present for individuals who suffer from hypersusceptibility to ionizing radiation.