Soybean (Glycine max L.) is the most important legume and oilseed crop. As a leguminous crop, it plays an irreplaceable role towards the sustainable agricultural system with biological nitrogen fixation. However, its production can be dramatically decreased by the occurrence of water stress. Water stress including drought and flooding induces the morpho-physiological and biochemical changes at different growth stages, which negatively affects the adaptability and yield of soybean. Genetic diversity that ensures productivity in challenging environment exists within germplasm, their wild relatives and species that are adapted to the water stress. The discovery of gene mapping, QTLs associated with root traits, slow canopy wilting, nitrogen fixation and flooding tolerance have accomplished significant progress in breeding programs. Identification of drought-responsive genes and transcription factors such as WRKY, DREBs, ERFs, ZIP, ZFP, MYB and NAC are valuable to ameliorate the water stress in soybean. Understanding the genetic mechanism using transcriptomic and proteomic approaches would be the ultimate choice for mitigating the water stress. Integration of well-designed soybean breeding program coupled with omic techniques would pave the way for developing drought and flooding resilient soybean cultivars.Due to the rapid rise in the commercial value of soybean in an international market, the total area under soybean cultivation has been increasing from last three decades. Soybean is an important cash crop with a total production of over 313.05 million metric tons in 2015-2016 (USDA data). During this year, the USA has been the world's leading producer of soybean representing 35% of the world production, followed by Brazil with 31%, Argentina with 17%, China with 4%, India with 3%, Paraguay with 3% and Canada with 2% (USDA data).Water stress including drought and flooding is considered as a major threat, limiting growth and yield of plants [5,6]. Drought is caused by insufficient rainfall or irrigation which results in soil drying, whereas, in flooding, water exists in soil solution causing water logging and submergence. In response to drought and flooding stress, 40-60% yield losses have been reported in soybean [7,8]. High temperature, low humidity in atmosphere and water deficiency are the main causes of drought [9,10]. Drought stress affects germination rate and early seedling growth of the plant [11,12]. Under water deficit conditions, a significant reduction in germination, hypocotyl length, root and shoot fresh and dry weight were observed whereas the root length is increased [13]. It also affects the carbon assimilation and phenology of the plant [10]. Prolonged drought stress at different growth stages has profound effect on soybean growth and yield [14].To counteract the adverse effects of drought, the soybean plant adopts three mechanisms i.e. escape, tolerance, and avoidance [15]. In the escape mechanism, the plant completes its life cycle before the onset of drought. Normally, the plants complete their...